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Abstract—This paper considers the capacity of sub-sampled
analog channels when the sampler is designed to operate inde-
pendent of the instantaneous channel realization, and investi-
gates sampling methods that minimize the worst-case (minimax)
sampled capacity loss due to channel-independent (universal)
sampling design. Specifically, a compound multiband channel
with unknown subband occupancy is considered, when perfect
channel side information is available to both the receiver and the
transmitter. We restrict our attention to a general class of periodic
sub-Nyquist samplers, which subsumes as special cases sampling
with modulation and filter banks. Our results demonstrate that
under both Landau-rate and super-Landau-rate sampling, the
minimax sampled capacity loss due to universal design depends
only on the band sparsity ratio and the undersampling factor,
modulo a residual term that vanishes at high signal-to-noise ratio.
We quantify the capacity loss under sampling with periodic
modulation and low-pass filters, when the Fourier coefficients
of the modulation waveforms are randomly generated (called
random sampling). Our results highlight the power of random
sampling methods, which achieve minimax sampled capacity loss
uniformly across all channel realizations and are thus optimal in
a universal design sense.

Index Terms—Sub-Nyquist sampling, minimaxity, universal
sampling, channel capacity, non-asymptotic random matrices

I. INTRODUCTION

The maximum rate of information that can be conveyed
through an analog channel largely depends on the sampling
technique and rate employed at the receiver end. In wideband
communication systems, hardware and cost limitations often
preclude sampling at or above the Nyquist rate, which becomes
a major bottleneck in designing energy-efficient receiver
paradigms. Understanding the effects upon capacity of sub-
Nyquist sampling is crucial in circumventing this bottleneck.

In practice, the receiver hardware and, in particular, its
sampling mechanism is typically static and hence designed
based on a family of possible channel realizations. During
operation, the actual channel realization will vary over this
class of channels, and the sampler thus operates independently
of instantaneous channel side information (CSI). This has
no effect if the sampling rate is equal to or above the
Nyquist rate of the channel family. However, in the sub-
Nyquist sampling rate regime, the sampler design significantly
impacts the information rate achievable over different channel
realizations. As was shown in [1], the capacity-maximizing
sub-Nyquist sampling mechanism for a given linear time-
invariant (LTI) channel depends on specific channel realiza-
tions. In time-varying channels, sampled capacity loss relative
to the Nyquist-rate capacity is necessarily incurred due to
channel-independent (universal) sub-Nyquist sampler design.
Moreover, it turns out that the capacity-optimizing sampler for
a given channel structure might result in very low data rates
for other channel realizations.

In this paper, we explore universal design of a sub-Nyquist
sampling system that is robust against the uncertainty and vari-
ation of instantaneous channel realizations, based on sampled
capacity loss as a metric. In particular, we investigate the
fundamental limit of sampled capacity loss in some overall
sense (as detailed in Section II-C), and design a sub-Nyquist
sampling system for which the capacity loss can be uniformly
controlled and optimized over all possible channel realizations.

A. Related Work and Motivation
In various situations, sampling at the Nyquist rate is not

necessary for preserving signal information if certain signal
structures are appropriately exploited [2]. For example, con-
sider multiband signals that reside within several subbands
over a wide spectrum. If the spectral support is known, then
the sampling rate necessary for perfect signal reconstruction
is the spectral occupancy (e.g. [3]), termed the Landau rate.
Inspired by compressed sensing, spectrum-blind sub-Nyquist
samplers have also been developed, e.g. [4]. These works,
however, were not based on capacity as a metric in the sampler
design.

On the other hand, the Shannon-Nyquist sampling theorem
has frequently been used to investigate analog channel capacity
(e.g. [5]), under the premise that sampling, when it is per-
formed at the Nyquist rate, preserves information. The effects
upon capacity of oversampling with quantization have also
been studied [6]. Our recent work [1], [7] established a new
framework for investigating the capacity of LTI channels under
sub-Nyquist sampling, including filter-bank and modulation-
bank sampling and, more generally, time-preserving sampling.
We showed that periodic sampling or, more simply, sampling
with a filter bank, is sufficient to maximize capacity among
all sampling structures under a given sampling rate constraint,
assuming perfect CSI at both the receiver and the transmitter.

Practical communication systems, however, involve time-
varying channels, e.g. wireless fading channels. Time-varying
channels are often modeled as a channel with state [8], where
the channel variation is captured by a state, or, more simply,
a compound channel [9] where the channel realization lies
within a set of possible channels. One class of compound
channel models concerns multiband channels, where the in-
stantaneous active frequency support resides within several
continuous intervals, spread over a wide spectrum. This model
naturally arises in several wideband communication systems,
including time division multiple access systems and cognitive
radio networks. However, to the best of our knowledge, no
prior work has investigated, from a capacity perspective, a
universal sub-Nyquist sampling paradigm that is robust to
channel variations in the above channel models.
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B. Contribution
We consider a compound multiband channel, whereby the

channel bandwidth W is divided into n continuous subbands
and only k subbands are active for transmission. We consider
the class of periodic sampling (i.e. a system that consists
of a periodic preprocessor and a recurrent sampling set,
defined in Section II-B) with period n/W and sampling rate
fs = mW/n. The system is termed Landau-rate sampling
(super-Landau-rate sampling) if fs is equal to (greater than)
the spectral size of the instantaneous channel support.

We first derive, in Theorem 3, a fundamental lower limit
on the largest sampled capacity loss incurred by any channel-
independent sampler, under both Landau-rate sampling and
super-Landau-rate sampling. Theorem 4 studies the capacity
loss under a class of channel-independent sampling with
periodic modulation (of period n/W ) and low-pass filters,
when the Fourier coefficients of the modulation waveforms are
independently randomly generated (termed independent ran-
dom sampling). We demonstrate that with exponentially high
probability, the sampled capacity loss matches the lower bound
of Theorem 3 uniformly over all realizations. This implies that
independent random sampling achieves minimum worst-case
(or minimax) capacity loss among all periodic sampling meth-
ods with period n/W . Furthermore, for a large class of super-
Landau-rate samplers, we determine the capacity loss under
independent random sampling when the Fourier coefficients
of the modulation waveforms are i.i.d. Gaussian-distributed.
With high probability, this sampling method achieves minimax
capacity loss among all periodic sampling with period n/W .

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Compound Multiband Channel
We consider multiband channels with n subbands1 and total

bandwidth W as follows. Denote by
(
[n]
k

)
the set of all k-

combinations of [n] := {1, · · · , n}. A state s ∈ (
[n]
k

)
is

generated, which dictates the channel support and realization.
Specifically, given a state s, the channel is an LTI filter with
impulse response hs(t) and frequency response Hs(f). It is
assumed that there exists a function H(f, s) such that for every
f and s, Hs(f) can be expressed as Hs(f) = H(f, s)1s(f),
where 1s(f) denotes the indicator function that equals 1 when
f lies in the set of active subbands given s.

A transmit signal x(t) with a power constraint P is passed
through this multiband channel, which yields a channel output
rs(t) = hs(t)∗x(t)+η(t), where η(t) is stationary zero-mean
Gaussian noise with power spectral density (PSD) Sη(f).
Assume that both the transmitter and the receiver have perfect
CSI (including s, Hs(f), Sη(f)).

The above model subsumes as special cases the following
communication scenarios.

• Time Division Multiple Access Model. The channel is
shared by a set of different users. At each time-frame,
the receiver (e.g. the base station) allocates a subset of
subbands to one designated sender over that timeframe.

• White-Space Cognitive Radio Network. In this setting,
cognitive users exploit spectrum holes unoccupied by pri-
mary users for transmission. The spectrum hole locations
available to cognitive users may change over time.

1Note that in practice, n is typically a large number. For instance, the
number of subcarriers ranges from 128 to 2048 in LTE.

B. Sampled Channel Capacity

We aim to design a sampler that works at rates below the
Nyquist rate (i.e. the channel bandwidth W ). In particular, we
consider periodic sampling as defined in [1], which is the most
widely used sampling method in practice.

Definition 1 (Periodic Sampling). Consider a sampling sys-
tem consisting of a preprocessor with an impulse response
q(t, τ) followed by a sampling set Λ = {tk | k ∈ Z}. A linear
sampling system is said to be periodic with period Tq and
sampling rate fs (fsTq ∈ Z) if ∀t, τ ∈ R and ∀k ∈ Z,

q(t, τ) = q(t+ Tq, τ + Tq), tk+fsTq
= tk + Tq. (1)

Consider a periodic sampling system P with period Tq =
n/W and sampling rate fs := mW/n for some integer m. A
special case consists of sampling with a combination of filter
banks and periodic modulation with period n/W , as shown in
[7, Fig. 4]. The channel capacity in a sub-sampled LTI channel
under periodic sampling has been derived in [1, Theorem 5].
Specifically, denote by si and fi the ith smallest element in s
and the lowest frequency of the ith subband, respectively, and
define Hs(f) as a k × k diagonal matrix obeying

(Hs(f))ii =
|H (fsi

+ f, s)|√Sη(fsi
+ f)

.

Then the sampled channel capacity, when specialized to our
setting, is given as follows. See [1] for more details.

Theorem 1 ( [1]). Consider a channel with total bandwidth
W . Perfect CSI is known at both the transmitter and the
receiver, and equal power allocation is employed over the
active subbands. If a periodic sampler P with period n/W
and sampling rate fs =

m
n W is employed, then the sampled

channel capacity at a given state s obeys

CQ
s =

ˆ W
n

0

1

2
log det

(
Im +

P

βW
(Q(f)Q∗(f))−

1
2 Qs(f)

·H2
s(f)Q

∗
s(f) (Q(f)Q∗(f))−

1
2

)
df, (2)

Here, for any given f , Q(f) is an m × n matrix that only
depends on P , and Qs(f) denotes the submatrix consisting
of the columns of Q(f) at indices of s.

In general, Q(f) is a function that varies with f . Unless
otherwise specified, we call Q(·) the sampling coefficient
function with respect to the sampling system P .

A special class of sampling systems concerns the ones
whose Q(·) are flat over [0, fs/m], in which case we can
use an m × n matrix to represent Q(·), termed a sampling
coefficient matrix. This class of sampling systems can be
realized through an m-branch system shown in Fig. 1. At
the ith branch, the channel output is modulated by a periodic
waveform qi(t) of period n/W , passed through a low-pass
filter with pass band [0, fs/m], and then uniformly sampled
at rate fs/m, where the Fourier transform of qi(t) obeys
F (qi(t)) =

∑n
l=1 Qi,lδ

(
f − lWn

)
. A sampling system within

this class is said to be (independent) random sampling if the
entries of Q are (independently) randomly generated, and
is termed Gaussian sampling if the entries of Q are i.i.d.
Gaussian-distributed.
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Figure 1. Sampling with a modulation bank and low-pass filters. The channel
output r(t) is passed through m branches, each consisting of a modulator
with modulation waveform qi(t) and a low-pass filter of pass band [0, fs/m]
followed by a uniform sampler with sampling rate fs/m.

It turns out that this simple sampling structure is sufficient
to achieve overall robustness among all periodic sampling
systems of period Tq = n/W , as detailed in Section III.

C. Universal Sampling
As shown in [1], the optimal sampler for a given LTI

channel extracts out a frequency set with the highest SNR and
hence suppresses aliasing. Such an alias-suppressing sampler
may achieve very low capacity for some channel realizations.
In this paper, we desire a sampler that operates independent of
the instantaneous CSI, and our objective is to design a single
linear sampler that achieves to within a minimal gap of the
Nyquist-rate capacity across all possible channel realizations.

1) Sampled Capacity Loss: Universal sub-Nyquist samplers
incur capacity loss relative to channel-optimized samplers. For
any s, the Nyquist-rate capacity under equal power allocation
and optimal power allocation can be respectively written as

C
Peq
s =

ˆ W/n

0

1

2
log det

(
Ik +

P

βW
H2

s(f)

)
df, (3)

Copt
s =

ˆ W/n

0

1

2
log det

(
ν

βW
H2

s(f)

)
df, (4)

where ν is determined by a water-filling power allocation
strategy. For any sampling coefficient function Q(·) and any
given state s, we can then define the sampled capacity loss as

LQ
s := Cs − CQ

s , LQ,opt
s := Copt

s − CQ
s .

These metrics quantify the capacity gaps relative to Nyquist-
rate capacity due to universal sampling. When sampling is per-
formed at or above the Landau rate but below the Nyquist rate,
these gaps capture the rate loss due to channel-independent
sampling relative to channel-optimized sampling.

For an m × n matrix M , we denote by LM
s the sampled

capacity loss with respect to a sampling coefficient function
Q(f) ≡M , which is flat across [0,W/n].

2) Minimax sampler: Frequently used in the theory of
statistics, minimaxity is a metric that seeks to minimize the
loss function in some overall sense, defined as follows.

Definition 2. A sampling system associated with a sampling
coefficient function Qm which minimizes the worst-case sam-
pled capacity loss, that is, which satisfies

max
s∈([n]

k )
LQm

s = inf
Q(·)

max
s∈([n]

k )
LQ
s ,

Figure 2. Minimax sub-Nyquist sampler v.s. the sub-Nyquist sampler that
minimizes worst-case capacity, where the sampling is channel-independent.

is called a minimax sampler with respect to
(
[n]
k

)
.

The minimax criteria is of interest for designing a sampler
robust to all possible channel states. It aims to control the rate
loss across all states in a uniform manner, as illustrated in
Fig. 2. Note that the minimax sampler is in general different
from the one that maximizes the lowest capacity among all
states (worst-case capacity). While the latter guarantees an
optimal worst-case rate that can be achieved regardless of
which channel is realized, it may result in significant sampled
capacity loss in many states with large Nyquist-rate capacity,
as illustrated in Fig. 2. In contrast, a desired minimax sampler
controls the capacity loss for every single state s, and allows
for robustness over all channel states with universal sampling.

III. MAIN RESULTS

In general, the minimax capacity loss problem is non-
convex, and hence it is difficult to identify the optimal sampler.
It turns out, however, that the minimax capacity loss can be
approached by random sampling at moderate-to-high SNR.

Define the undersampling factor α := m
n and the sparsity

ratio β := k
n . Our main results are summarized below.

Theorem 2. Consider any sampling coefficient function Q(·)
with an undersampling factor α, and let the sparsity ratio be
β. Define SNRmin := P

βW inf
0≤f≤W,s∈([n]

k )
|H(f,s)|2
Sη(f)

, and let
H(x) := −x log x− (1− x) log(1− x).

(i) (Landau-rate sampling) If α = β, then

inf
Q

max
s∈([n]

k )
LQ
s =

W

2

{
H (β) +O

(
log n

n

)
+Δ

}
, (5)

(ii) (Super-Landau-rate sampling) Suppose that α > β and
1− α− β > 0. Then

inf
Q

max
s∈([n]

k )
LQ
s =

W
{
H (β)− αH

(
β
α

)
+O

(
log2 n√

n

)
+ Δ̃

}
2

.

(6)

Here, the residual terms obey Δ, Δ̃ ∈
[
− 2√

SNRmin
, β
SNRmin

]
.

In addition, in both regimes, one has

0 ≤ inf
Q

max
s∈([n]

k )
LQ,opt
s ≤ A

SNRmin

for some constant A determined by H(f)√
Sη(f)

and β (see [10]

for a detailed expression).

2013 IEEE International Symposium on Information Theory

1034



Theorem 2 characterizes the minimax sampled capacity loss
under both Landau-rate and super-Landau-rate sampling. Note
that the Landau-rate sampling regime in (i) is not a special case
of the super-Landau-rate regime considered in (ii), since these
results are given under the constraint β + α < 1.

The expressions (5) and (6) contain residual terms no larger

than O
(

log2 n√
n

)
+ 2√

SNRmin
, which vanishes for large n and

high SNR. These fundamental minimax limits do not scale
with the SNR and n except for a vanishing residual term.

Theorem 2 involves the verification of two parts: a converse
part that provides a fundamental lower bound on the minimax
sampled capacity loss, and an achievability part that provides a
sampling scheme to achieve this bound. In fact, the sampling
methods illustrated in Fig. 1 are sufficient to approach the
minimax sampled capacity loss. Unless otherwise specified,
we assume in our analysis that the noise has unit PSD2

Sη(f) ≡ 1.

A. The Converse
We need to show that the minimax capacity loss under

any channel-independent sampler cannot be lower than (5)
and (6). This is given by the following theorem, which takes
into account the entire regime including the case in which
α+ β > 1.

Theorem 3. Consider any Riemann-integrable sampling co-
efficient function Q(·) with an undersampling factor α ≥ β.
The minimax sampled capacity loss can be lower bounded by

inf
Q

max
s∈([n]

k )
LQ
s ≥

W
{
H (β)− αH

(
β
α

)
− 2√

SNRmin
− logn

n

}
2

.

(7)

For a given β, the bound is decreasing in α. While the
active channel bandwidth is smaller than the total bandwidth,
the noise (even though the SNR is large) is scattered over
the entire bandwidth. Thus, none of the universal sub-Nyquist
sampling strategies are information preserving, and increasing
the sampling rate can always harvest capacity gain.

B. Achievability with Landau-rate Sampling
Consider the achievability under Landau-rate sampling (β =

α). A class of sampling methods that we can analyze con-
cerns sampling with periodic modulation followed by low-
pass filters or, more simply, independent random sampling.
As n grows large, its capacity loss approaches (7) uniformly
across all realizations. The results are stated in Theorem 4
after introducing a class of sub-Gaussian measure below.

Definition 3. A measure ν satisfies the logarithmic Sobolev
inequality3 with constant cLS if, for any differentiable g,ˆ

g2 log

(
g2/

ˆ
g2dν

)
dν ≤ 2cLS

ˆ
|g′|2 dν.

Theorem 4. Let M = (ζij)1≤i≤k,1≤j≤n be a real-valued
random matrix in which ζij’s are jointly independent with zero

2Note that this incurs no loss of generality since we can always include a
noise-whitening LTI filter at the first stage of the sampling system.

3A probability measure obeying the logarithmic Sobolev inequality pos-
sesses sub-Gaussian tails. See [10] for references. In particular, the standard
Gaussian measure satisfies this inequality with constant cLS = 1.

mean and unit variance. In addition, ζij satisfies one of the
following conditions:

(a) ζij is almost surely bounded by a constant D;
(b) Its probability measure satisfies the logarithmic Sobolev

inequality with a constant cLS.
Then there exist some constants c, C > 0 such that

max
s∈([n]

k )
LM
s ≤ W

2

(
H (β) +

5 log k

n
+

β

SNRmin

)
(8)

with probability exceeding 1− C exp (−cn).
Theorem 4 demonstrates that independent random sampling

achieves minimax capacity loss among all periodic sampling
methods with period n/W . A broad class of sub-Gaussian
ensembles, as long as the entries are jointly independent with
matching moments, suffices to generate minimax samplers.

C. Achievability with Super-Landau-Rate Sampling
Consider the super-Landau-rate regime where β < α < 1

and β + α < 1. The achievability result is stated as follows.

Theorem 5. Let M = (ζij)1≤i≤m,1≤j≤n be a random matrix
in which ζij are i.i.d. drawn from N (0, 1). Suppose that β =
k/n and α = m/n are constants satisfying α + β < 1 and
β < α. Then there exist some constants c, C > 0 such that

max
s∈([n]

k )
LM
s ≤

W
[
H(β)− αH

(
β
α

)
+O

(
log2 n√

n

)
+ β

SNRmin

]
2

with probability exceeding 1− C exp (−cn).
Theorem 5 indicates that i.i.d. Gaussian sampling achieves

the minimax capacity loss (6) with a vanishingly small gap.
In contrast to Theorem 4, we restrict our attention to Gaussian
ensembles, which suffices for the proof of Theorem 2.

D. Equivalent Algebraic Problems
Our results can be converted to three equivalent algebraic

problems without difficulty, which we state in this subsection.
The analysis of these algebraic problems are mathematically
involved, and interested readers are referred to [10] for details.

Recall that P
βW H2

s 	 SNRminIk. Define Qw
s :=

(QQ∗)−
1
2 Qs. Simple manipulations (detailed in [10]) yield

LQ
s = −

ˆ W
n

0

log det
(

βW
P H−2

s +Qw∗
s Qw

s

)
df

2
+

βWΔs

2
,

where the second equality uses the fact that

0 ≤ 1

k
log det

(
Ik +

P

βW
H2

s

)
− 1

k
log det

(
P

βW
H2

s

)

=
1

k

k∑
i=1

log

⎛
⎝1 +

1

λi

(
P

βW H2
s

)
⎞
⎠ ≤ 1

SNRmin
. (9)

In the high-SNR regime (where βW
P H−2

s 
 Ik), (??) makes
det (εIk +Qw∗

s Qw
s ) an object of interest (for some small ε).

Note that (QQ∗)−
1
2 Q has orthonormal rows. The follow-

ing theorem studies det (εIk +B∗
sBs) for any B that has

orthonormal rows, which is the basis for proving Theorem 3.
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Theorem 6. (1) Consider any m × n matrix B obeying
BB∗ = Im, and denote by Bs the m × k submatrix of B
with columns coming from the index set s. Then for any ε ≥ 0,(

m

k

)
≤

∑
s∈([n]

k )

det (εIm +B∗
sBs) ≤

(
m

k

)(
1 +

√
ε
)n+k

.

(2) For any positive integer p, suppose that B1, · · · ,Bp

are all m× n matrices such that BiB
∗
i = Im. Then,

max
B1,··· ,Bp

min
s∈([n]

k )

1

np

p∑
i=1

log det
(
εIk + (Bi)

∗
s (Bi)s

)

≤ αH
(
β

α

)
−H (β) + 2

√
ε+

log (n+ 1)

n
. (10)

When it comes to the achievability part, the major step
is to quantify det(εIk + (MMT )−1MsM

T
s ) for every s.

Interestingly, this quantity can be uniformly bounded for ran-
dom ensembles. This is stated in the following theorem, which
demonstrates the achievability for Landau-rate sampling.

Theorem 7. Let M be a k × n real-valued random matrix.
Under the conditions of Theorem 4, one has

min
s∈([n]

k )

1

n
log det

(
εIk +

(
MMT

)−1

MsM
T
s

)

≥ −H (β)− (5 log k) /n

with probability exceeding 1− C exp (−cn).
Instead of studying a large class of sub-Gaussian random

ensembles4, the following theorem focuses on i.i.d. Gaussian
matrices, which establishes the optimality of Gaussian random
sampling for the super-Landau regime.

Theorem 8. Let M be an m×n real-valued Gaussian matrix.
Under the conditions of Theorem 5, one has

min
s∈([n]

k )

1

n
log det

(
εIk +MT

s

(
MMT

)−1

Ms

)

≥−H(β) + αH (β/α) +O
((
log2 n

)
/
√
n
)

with probability at least 1− C exp (−cn).
The proofs of Theorems 6-8 (which we omit here due to

space limitations) rely heavily on non-asymptotic (random)
matrix theory. Interested readers are referred to [10] for details.

IV. IMPLICATIONS AND DISCUSSION

Under both Landau-rate and super-Landau-rate sampling,
the minimax sampled capacity loss depends almost entirely
on β and α. Some implications are as follows.

1) The sampled capacity loss per unit Hertz is illustrated
in Fig. 3(a). For instance, when α = β, we suffer from
the largest capacity loss when half of the bandwidth is
active. The capacity loss vanishes when α → 1, since
Nyquist-rate sampling is information preserving. The
capacity loss divided by β is plotted in Fig. 2(b), which
provides a normalized view of the capacity loss. It can

4The proof argument for Landau-rate sampling cannot be readily carried
over to super-Landau regime since Ms is now a tall matrix, and hence we
cannot separate Ms and MM∗ easily.
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Figure 3. (a) The minimax sampled capacity loss per unit Hertz v.s. the
sparsity ratio β and the undersampling factor α, when β ≤ α ≤ 1. (b) The
minimax sampled capacity loss per Hertz divided by β v.s. the sparsity ratio
β.

be seen that the normalized loss decreases monotonically
with β, indicating that the loss is more severe in sparse
channels.

2) The sampled capacity loss incurred by independent
(resp. Gaussian) random sampling meets the fundamen-
tal minimax limit for Landau-rate (resp. super-Landau-
rate) sampling, which reveals that random sampling
is optimal in terms of universal sampling design. The
capacity achievable by random sampling exhibits very
sharp concentration around the minimax limit uniformly

across all states s ∈ (
[n]
k

)
.

3) For the Landau-rate regime, the optimal sampling matrix
does not need to be i.i.d. generated due to the universal-
ity properties of random matrices. A large class of sub-
Gaussian measure (and the mixture of them) suffices to
generate minimax sampling systems, provided that all
entries are jointly independent.
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